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Formulas for tune shift and B beat due to perturbations in circular accelerators
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Rigorous formulas for nonlinear tune shift agdfunction distortion due to perturbations in the focusing
forces are presented, which complement the well-known tune-shift formula for quadrupole errors. Using these
formulas, the calculation of nonlinear chromaticity given by Takgaal.[Phys. Rev. E70, 016501(2004)] can
be greatly simplified and extended to higher order. In addition, an expression for the nonlinear chromatic
B-function distortion is given.
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[. INTRODUCTION system knowing the solution of the unperturbed one whose

A basic task in circular accelerator design and operation i@N€-tum phase advance and Courant-Snyder parameters are
to understand and control the variations of important lattice“o: Bor @nd ao. In order to simplify the problem and high-
properties such as the tune agdfunction under the influ- 19ht the perturbation, it is convenient to use the normal co-
ence of small perturbations in focusing forces due to field*rdinates of the unperturbed systemx/ Vg, and p=(Bop
gradient errors, chromatic effects, and so on. Many perturba- @X)/VBo. Using the generating functiof,=(1/vBo)xp
tive treatments exist in the literature. Recently, in the context (ao/ Bo)x*/2 and the conditionag=KoBo= 7o, the new
of nonlinear chromaticity, Takaet al. pointed out that there Hamiltonian becomes
is a lack of rigorous results especially for high-order effects,

2 Y2
and in fact, many treatments are inaccurate or simply wrong HOXPS) = T + (1 + BAK) . )
[1]. They then provided a rigorous derivation for up to third- 2B, 28,

order chromaticity. Although we share their view on the gen- :

eral lack of rigorousness in many of the treatments, rigorougughermor?' using the unperturbed phase advan(
perturbative theory does exist. In fact, an accurate formulz/ 08 /Bo(s') instead ofs as the time variable, the Hamil-
for tune calculation traces back to Hill's century-old original tonian simply reads

work [2]. In this paper, we revise the results on the pertur- — —

bative computation of tune an@ function and present ﬁ(ﬁ w):p—+(1 +,33AK)X—_ (3)
simple practical formulas for computing the nonlinear tune 2 2

shift and B-function distortion due to gradient errors up to
third and second order, respectively. Then we show th .
Takaoet al’s results on nonliﬁear ch¥omaticity can be ob- _n;ijer pafl meters of the pertu_rbed system inBgand let
tained much more easily from our tune-shift formula, and ag¢» 8 @nda be the corresponding parameters of the system
an extension, we present the expression for the nonlinedf Ed. (3). Itis not difficult to see that

chromaticB-beat factor. This work is stimulated by the work _ — - _

of Takaoet al. and results from an intended comment on m=p, B=BoB, a=agfta. (4)

their work. In addition to extendingl], we hope to raise The Hamiltonian of Eq(3) is well suited for perturbative

awareness of the rigorous perturbation theory and Hill'Syeaiment whem\K is small. The equation of motion is a
original result as well as proper formulas for the tune shifty; . equation that reads

and g-function distortion, which complement the well-

known tune-shift formula for quadrupole errors, E43) be- d?x _
low. Iﬁz + (l +ESAK)X:O (5)

II. TUNE SHIFT AND B-FUNCTION DISTORTION DUE
TO GRADIENT ERRORS

Let us start with the Hamiltonian

2 oo
z 2 éfg — i27n
H(x,p;s):%+(Ko+AK)XE, (1) ( 77) (1+B2AK) = X §,g2mMko, (6)

et u, B, anda be the one-turn phase advance and Courant-

The periodic focusing is naturally characterized by its Fou-
rier coefficientsd, as

n=—w

whereKq(s) is the unperturbed focusing strength akid is ~ where the coefficient
the perturbation. A general problem is to solve the perturbed

Ywith the factor (uo/ m)2, 9, are effectively the Fourier coeffi-
cients for the system whose period is normalized fragto 7, to
*Electronic address: wangcx@aps.anl.gov be consistent with well-established mathematical results.
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2 1 2nmyl [9. = 2
o= (@> (1 +— % dSBoAK) (7) _ 2 Rdﬁ e Ho] WCOt(ﬁoW)E RA
T Ko ) WOy L’
it')s the average focusing and the other coefficients are given . * {(m2+ mn+ n2 - 39,)Re 9,9, M mhino]
’ i | A= 9907 dgl(m )= o]
2 2 * A2 i,
9=3 @ dseZmiopAK (n#0).  (8) , (P —mn+ n? - 390) Re 01,2 ™" Wo]}
4(m? = 9g) (n* = 9p)[ (M= n)? = ]

Using the Fourier coefficients, an exact expression for the
phase advancg was obtained originally by Hill and others This B-beat factor of the perturbed system can be expanded
in terms of an infinite determinant, known as Hill's determi- accurately to the second order as
nant, ag 2—6]

B=1 u, 3u2 L COSKoU | uw 15
. T =1-—-—+—4+ — -—,
cosu=1-2 sﬁ(z\'ﬁo)D. 9 2 smz,uo 2
Here the infinite determinari is given by Note that they term actually cancels with the second term of
w. Also note thatv(s) gives rise to ars-dependent variation.
3 o The high-order terms dfi in both Eq.(12) and Eq.(15) are
Ynem - : S
D=|[6m+* -3l - (10 usually negligible. The nonlinear behavior is mostly due to
o = (2n)7|- the resonant terms i andw.

where50=0 and5n=19n for n# 0. ExpandingD up to the
third order in9, yields[3,4] I1l. NONLINEAR CHROMATICITY

The chromatic tune shifAu/27 due to momentum de-
, 5 — viation 5=Ap/p is parametrized by the linear and nonlinear
VO nm1 U0~ N 8Vl chromaticity & as
" 2 RE(D ¥y D) (WP + 12 + M= 38)
mn=1 (Do= Me) (o= nA)[Fp— (M+n)?]

. ’r_ o 2 B —
—  wsidgma |9 msinVdgm
cosu = cog\VIym) + — +

(1D Sl w07 g% (16
2T

Since it is often important to know the perturbative phase
shift A= - o, We expand it into a series accurate to the The chromaticity can be readily derived using the tune-shift
third order ind, as formula in Eq.(12) and the perturbative chromatic focusing

described if1], i.e.,
poU _pol® v pou®  pCOSpoUY
2 8 sinug 16 2 sirfug AK=G(s,8) = 2, G,o". (17
(12 "

Ap=

where the two small quantities andv are defined via Eq. To distinguish the Fourier coefficients @; and G,, left
(11) and the equation cqs=cogugVl+u)+v, i.e., u  subscriptsd, and,d, will be used.

=(1/uo) $ds BoAK, which is the average error, andis the The linear and quadratic chromaticity are obvious from
last two terms of Eq(11). Note thatu andv are at least first-  the first term and the first three terms of E42), respec-
and second-order quantities, respectively. The well-knowiiively,

tune-shift expressiofi7]

1
Ap_ 1 &= PG, (18)
Av==FE= ds BoAK 1y T aro
2T 4
is the first-order term in Eq.12). 1 o 1,92
The B function has been derived recently [i] to the &H=—ByGy— /30(31 - E 190 5 (19)
second order inY,, as 77 167 8Mo A1 o= 7N
—~_ Mosin(y 19077)(1 w) (14 The overbar is a shorthand for the integfds(- - -). The cu-
T \ﬁosmﬂ ’ bic chromaticity is straight-forward to compute, paying at-
tention to all the ways to generate third-order tefi®k The
where result reads
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1 1 1 *° Wsz: 9 eiZﬂ'an/,u.O:I 3
£3= 7 —BoGs~ g BoG1 BiG2 ==~ 3G, - 2%n +—>38G.2
47 87 B2 2,u0'80 2 n§1 i 8,u(2)'80 1
3~ x . _
_ ar Rdzlﬁn 2792) + 1 zms .\ 1 B e 2 7TZRd::L,BneI271'n1,l//;L0:|
dpopsy Ho= TN 327 g 2ug Ot "
3 “ 2_ 2.2 2 5 w .
M ol L ] L (7K, = Bug)Re; Iy 1 9,82 ™V 0]
16u27°01 2 2n?)? 16 + X 2_ 2 2_ 2 2_ 2
n=1 Ko ¥ mn=1 47 ~ /-Lo)(ﬂ'zn - ,Uvo)[ﬂ'z(m"' n)* - ugl

o]

» 2 Re(lﬁrn 10y 119;+n)[3u§ - 712(m2 +n2+ mn)] 774(172K _ 3MS)Re[1ﬁm lﬂ:eiz(m—n)wlplﬂo]
met (g = 7MA)(uh— ) g~ P (m+n)?] A(2e - 12) (w22 — ) [mA(m-n)? - 2] |
(20) (23

wherek, =m?+mn+n? to shorten the expression.

These are the same results as obtaindd fithrough a much

lengthier derivation, given the relationsfdsB,G, V. CONCLUDING REMARKS
= (ol 2)an(0) and,, ¥, =[ 1§/ (27 [am(n) =i by()] for non- We presented a rigorous perturbation theory for comput-
zeron.

ing nonlinear tune shift an@ beating due to field gradient
errors and chromatic effects. Practical formulas up to third
order for tune shift and second order for beta beating are
given. Even higher-order tune shifts can be obtained via
Hill's determinant. Using the tune-shift formula, Takab
al.’s derivation of the nonlinear chromaticity is greatly sim-
plified. As an important complement, the expression for non-
linear chromaticg distortion is given. These formulas pro-
vide direct connections between the lattice properties and the
Fourier coefficients of the focusing field, and thus should be
useful for lattice analysis and optimizatigef chromatic
tune shift and/org distortion at the interaction points, for
example.
Using the B-beat formula in Eq(15), the linear and qua-

dratic coefficients can be written as

IV. NONLINEAR CHROMATIC B-FUNCTION
DISTORTION

The chromaticB-function distortion can be parametrized
as

B o =1+p04 oot . (21)
Bo
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Note that the termugcot uguiv,/2 will be canceled by the
last term of the previous expression.



