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Rigorous formulas for nonlinear tune shift andb-function distortion due to perturbations in the focusing
forces are presented, which complement the well-known tune-shift formula for quadrupole errors. Using these
formulas, the calculation of nonlinear chromaticity given by Takaoet al. fPhys. Rev. E70, 016501s2004dg can
be greatly simplified and extended to higher order. In addition, an expression for the nonlinear chromatic
b-function distortion is given.
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I. INTRODUCTION

A basic task in circular accelerator design and operation is
to understand and control the variations of important lattice
properties such as the tune andb function under the influ-
ence of small perturbations in focusing forces due to field
gradient errors, chromatic effects, and so on. Many perturba-
tive treatments exist in the literature. Recently, in the context
of nonlinear chromaticity, Takaoet al. pointed out that there
is a lack of rigorous results especially for high-order effects,
and in fact, many treatments are inaccurate or simply wrong
f1g. They then provided a rigorous derivation for up to third-
order chromaticity. Although we share their view on the gen-
eral lack of rigorousness in many of the treatments, rigorous
perturbative theory does exist. In fact, an accurate formula
for tune calculation traces back to Hill’s century-old original
work f2g. In this paper, we revise the results on the pertur-
bative computation of tune andb function and present
simple practical formulas for computing the nonlinear tune
shift andb-function distortion due to gradient errors up to
third and second order, respectively. Then we show that
Takaoet al.’s results on nonlinear chromaticity can be ob-
tained much more easily from our tune-shift formula, and as
an extension, we present the expression for the nonlinear
chromaticb-beat factor. This work is stimulated by the work
of Takao et al. and results from an intended comment on
their work. In addition to extendingf1g, we hope to raise
awareness of the rigorous perturbation theory and Hill’s
original result as well as proper formulas for the tune shift
and b-function distortion, which complement the well-
known tune-shift formula for quadrupole errors, Eq.s13d be-
low.

II. TUNE SHIFT AND b-FUNCTION DISTORTION DUE
TO GRADIENT ERRORS

Let us start with the Hamiltonian

Hsx,p;sd =
p2

2
+ sK0 + DKd

x2

2
, s1d

whereK0ssd is the unperturbed focusing strength andDK is
the perturbation. A general problem is to solve the perturbed

system knowing the solution of the unperturbed one whose
one-turn phase advance and Courant-Snyder parameters are
m0, b0, anda0. In order to simplify the problem and high-
light the perturbation, it is convenient to use the normal co-
ordinates of the unperturbed systemx̄=x/Îb0 and p̄=sb0p
−a0xd /Îb0. Using the generating functionF2=s1/Îb0dxp̄
−sa0/b0dx2/2 and the conditiona08=K0b0−g0, the new
Hamiltonian becomes

H̄sx̄,p̄;sd =
p̄2

2b0
+ s1 + b0

2DKd
x̄2

2b0
. s2d

Furthermore, using the unperturbed phase advancecssd
=esds8 /b0ss8d instead ofs as the time variable, the Hamil-
tonian simply reads

H̄sx̄,p̄;cd =
p̄2

2
+ s1 + b0

2DKd
x̄2

2
. s3d

Let m , b, anda be the one-turn phase advance and Courant-
Snyder parameters of the perturbed system in Eq.s1d, and let

m̄ , b̄, and ā be the corresponding parameters of the system
in Eq. s3d. It is not difficult to see that

m = m̄, b = b0b̄, a = a0b̄ + ā. s4d

The Hamiltonian of Eq.s3d is well suited for perturbative
treatment whenDK is small. The equation of motion is a
Hill’s equation that reads

d2x̄

dc2 + s1 + b0
2DKdx̄ = 0. s5d

The periodic focusing is naturally characterized by its Fou-
rier coefficientsqn as1

Sm0

p
D2

s1 + b0
2DKd = o

n=−`

`

qne
i2pnc/m0, s6d

where the coefficient
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1With the factor sm0/pd2, qn are effectively the Fourier coeffi-
cients for the system whose period is normalized fromm0 to p, to
be consistent with well-established mathematical results.

PHYSICAL REVIEW E 71, 036502s2005d

1539-3755/2005/71s3d/036502s3d/$23.00 ©2005 The American Physical Society036502-1



q0 = Sm0

p
D2S1 +

1

m0
R dsb0DKD s7d

is the average focusing and the other coefficients are given
by

qn =
m0

p2 R ds e−i2pnc/m0b0DK sn Þ 0d. s8d

Using the Fourier coefficients, an exact expression for the
phase advancem was obtained originally by Hill and others
in terms of an infinite determinant, known as Hill’s determi-
nant, asf2–6g

cosm = 1 − 2 sin2Sp

2
Îq0DD. s9d

Here the infinite determinantD is given by

D = Idnm+
q̃n−m

q0 − s2nd2I
−`

`

, s10d

where q̃0=0 andq̃n=qn for nÞ0. ExpandingD up to the
third order inqn yields f3,4g

cosm . cossÎq0pd +
p sinÎq0p

4Îq0
o
n=1

` uqnu2

q0 − n2 +
p sinÎq0p

8Îq0

3 o
m,n=1

`
Resqmqnqm+n

* dsm2 + n2 + mn− 3q0d
sq0 − m2dsq0 − n2dfq0 − sm+ nd2g

. s11d

Since it is often important to know the perturbative phase
shift Dm;m−m0, we expand it into a series accurate to the
third order inqn as

Dm =
m0u

2
−

m0u
2

8
−

v
sinm0

+
m0u

3

16
+

m0cosm0 u v
2 sin2m0

,

s12d

where the two small quantitiesu and v are defined via Eq.
s11d and the equation cosm=cossm0

Î1+ud+v, i.e., u
=s1/m0drdsb0DK, which is the average error, andv is the
last two terms of Eq.s11d. Note thatu andv are at least first-
and second-order quantities, respectively. The well-known
tune-shift expressionf7g

Dn =
Dm

2p
=

1

4p
R dsb0DK s13d

is the first-order term in Eq.s12d.
The b function has been derived recently inf3g to the

second order inqn as

b̄ .
m0

p

sinsÎq0pd
Îq0sinm

s1 + wd, s14d

where

w = o
n=1

`
Refqne

i2npc/m0g
n2 − q0

+
p cotsÎq0pd

4Îq0
o
n=1

` uqnu2

n2 − q0

+ o
m,n=1

` H sm2 + mn+ n2 − 3q0dRefqmqne
i2sm+ndpc/m0g

4sm2 − q0dsn2 − q0dfsm+ nd2 − q0g

+
sm2 − mn+ n2 − 3q0dRefqmqn

*ei2sm−ndpc/m0g
4sm2 − q0dsn2 − q0dfsm− nd2 − q0g J .

This b-beat factor of the perturbed system can be expanded
accurately to the second order as

b̄ = 1 −
u

2
+

3u2

8
+

cosm0 v
sin2m0

+ w −
uw

2
. s15d

Note that thev term actually cancels with the second term of
w. Also note thatwssd gives rise to ans-dependent variation.
The high-order terms ofu in both Eq.s12d and Eq.s15d are
usually negligible. The nonlinear behavior is mostly due to
the resonant terms inv andw.

III. NONLINEAR CHROMATICITY

The chromatic tune shiftDm /2p due to momentum de-
viation d=Dp/p is parametrized by the linear and nonlinear
chromaticityji as

Dm

2p
= j1d + j2d 2 + j3d 3 + ¯ . s16d

The chromaticity can be readily derived using the tune-shift
formula in Eq.s12d and the perturbative chromatic focusing
described inf1g, i.e.,

DK = Gss,dd = o
n

Gnd n. s17d

To distinguish the Fourier coefficients ofG1 and G2, left
subscripts1qn and2qn will be used.

The linear and quadratic chromaticity are obvious from
the first term and the first three terms of Eq.s12d, respec-
tively,

j1 =
1

4p
b0G1, s18d

j2 =
1

4p
b0G2 −

1

16pm0
b0G1

2 −
p3

8m0
o
n=1

` u1qnu2

m0
2 − p2n2 . s19d

The overbar is a shorthand for the integralrdss¯d. The cu-
bic chromaticity is straight-forward to compute, paying at-
tention to all the ways to generate third-order termsf8g. The
result reads
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j3 =
1

4p
b0G3 −

1

8pm0
b0G1 b0G2

−
p3

4m0
o
n=1

`
Res1qn 2qn

pd
m0

2 − p2n2 +
1

32pm0
2b0G1

3

+
p3

16m0
2b0G1 o

n=1

`
s3m0

2 − p2n2du1qnu2

sm0
2 − p2n2d2 +

p5

16m0

3 o
m,n=1

`
Res1qm 1qn 1qm+n

p df3m0
2 − p2sm2 + n2 + mndg

sm0
2 − p2m2dsm0

2 − p2n2dfm0
2 − p2sm+ nd2g

.

s20d

These are the same results as obtained inf1g through a much
lengthier derivation, given the relationsrdsb0Gm
=sm0/2dams0d andmqn=fm0

2/ s2p2dgfamsnd− i bmsndg for non-
zeron.

IV. NONLINEAR CHROMATIC b-FUNCTION
DISTORTION

The chromaticb-function distortion can be parametrized
as

b

b0
= b̄ = 1 +b1d + b2d 2 + ¯ . s21d

Using theb-beat formula in Eq.s15d, the linear and qua-
dratic coefficients can be written as

b1 = −
1

2m0
b0G1 − o

n=1

`
p2Ref1qne

i2pnc/m0g
m0

2 − p2n2 , s22d

b2 = −
1

2m0
b0G2 − o

n=1

`
p2Ref2qne

i2pnc/m0g
m0

2 − p2n2 +
3

8m0
2b0G1

2

+
1

2m0
b0G1 o

n=1

`
p2Ref1qne

i2pnc/m0g
m0

2 − p2n2

+ o
m,n=1

` H p4sp2k+ − 3m0
2dRef1qm 1qne

i2sm+ndpc/m0g
4sp2m2 − m0

2dsp2n2 − m0
2dfp2sm+ nd2 − m0

2g

+
p4sp2k− − 3m0

2dRef1qm 1qn
pei2sm−ndpc/m0g

4sp2m2 − m0
2dsp2n2 − m0

2dfp2sm− nd2 − m0
2gJ ,

s23d

wherek±=m2±mn+n2 to shorten the expression.

V. CONCLUDING REMARKS

We presented a rigorous perturbation theory for comput-
ing nonlinear tune shift andb beating due to field gradient
errors and chromatic effects. Practical formulas up to third
order for tune shift and second order for beta beating are
given. Even higher-order tune shifts can be obtained via
Hill’s determinant. Using the tune-shift formula, Takaoet
al.’s derivation of the nonlinear chromaticity is greatly sim-
plified. As an important complement, the expression for non-
linear chromaticb distortion is given. These formulas pro-
vide direct connections between the lattice properties and the
Fourier coefficients of the focusing field, and thus should be
useful for lattice analysis and optimizationsof chromatic
tune shift and/orb distortion at the interaction points, for
exampled.
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1

2R dsb0G3 −
m0

4
u1u2 +

m0

16
u1

3 −
v3

sinm0
+

m0cotm0u1v2

2 sinm0

where the subscripts ofu andv indicate their order ind. The
termv3 contains an obvious term from the last term of Eq.s11d
and the following terms from the second one:

p4sinm0

4m0
o
n=1

` F2Res1qn 2qn
pd

m0
2 − p2n2 +

m0
2u1u1qnu2

sm0
2 − p2n2d2G

+ sm0cotm0 − 1d
u1v2

2
.

Note that the termm0cotm0u1v2/2 will be canceled by the
last term of the previous expression.
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